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An approach is presented for deriving transmission line equivalent circuits that
can approximately model the S-parameter response of traveling-wave maser slow-
wave structures. The technique is illustrated by computing the S-parameter re-
sponses of an X-band and S-band maser slow-wave structure and comparing these

with experimental measurements.

I. Introduction

Since the early days of maser development, the travel-
~ ing-wave maser (TWM) has been widely used because of
its small size and its potential for relatively large instanta-
neous bandwidth, as compared with cavity masers. Several
different slow-wave structure (SWS) geometries have been
used, including meander lines, quarter-wavelength reso-
nant lines, and half-wavelength resonant lines. One feature
they all have in common is the use of predominantly trans-
verse electromagnetic (TEM) resonators placed parallel to
one another and coupled by their mutual capacitance and
inductance.

Further developments in this area, including new reso-
nant conductor geometries and impedance-matching net-
works that transition between the SWS and conventional
transmission lines, would be enhanced by the use of an
approximate equivalent circuit model for the SWS. The
purpose of this article is to present one approach to ar-
riving at such approximate equivalent circuits. Equiva-
lent circuits provide a nice physical picture of the SWS
and describe well its “filter” behavior: such properties as
the upper and lower cutoff frequencies and the group de-
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lay. The computational time required to analyze a given
structure is generally on the order of minutes, rather than
hours or days, as required by many numerical procedures
that compute the electromagnetic fields. Predicting the
filter properties from an equivalent circuit is a logical first
step in the design process. Ultimately, the electromagnetic
fields must be calculated to ascertain other properties of
the maser, such as the polarization of the signal and pump
radio frequency (RF) magnetic fields inside the structure.
However, this is best done when the choice of SWS ge-
ometries has already been narrowed from consideration of
their filter behavior.

This article is organized into eight sections. Following
the Introduction, Section II discusses what is required to
predict the behavior of coupled-line circuits. Section III
describes the SWS geometries that one can consider and
some assumptions used in deriving an equivalent circuit.
Section IV discusses the solution of the electrostatic field
problem, which is necessary to calculate the capacitance
matrix. Section V discusses the estimation of the effec-
tive dielectric constant, line lengths, and phase velocity.
Section VI discusses one way of estimating the terminat-



ing line capacitances. Section VII presents two exam-
ples of the analysis: the current JPL X-band (8.45 GHz)
half-wavelength comb SWS (Block IIA) and an S-band
(2.3 GHz) quarter-wavelength comb SWS partially loaded
with ruby. Part VIII presents some discussion and conclu-
sions. Appendix A presents a few other equivalent circuits
for representing coupled lines. Appendix B contains a list-
ing of the TOUCHSTONE programs used for the examples
in Section VII.

Il. Coupled-Line Circuit Theory

Distributed elements, such as transmission lines, obey
equations similar to ordinary reactances under certain cir-
cumstances. This requires the introduction of a new fre-
quency variable S = jtan(wf/(2f0)). If fo is the fre-
quency at which the line is a quarter-wavelength long, then
nf/(2f0) is the electrical length of the line.

Consider the input impedance at one end of a trans-

mission line, with the other end short-circuited. The input
impedance is given by

Zin = jZptand (1)

where 6 is the electrical length of the line. Rewritten in
terms of the variable S, this equation is simply

Zin = SZy (2)

The analogy with the impedance of a conventional induc-
tor, Z = jwl, leads one to associate L with Z,, and S
with jw.

If the other end of the line is terminated in an open
circuit, the input impedance is given by

Zin = —JZpcot (3)

Rewritten in terms of the variable S, this equation is sim-
ply

Zin = Zo/S (4)

The analogy with the impedance of a conventional capaci-
tor, Z = 1/(jwC) leads one to associate C with 1/Zy, and
S with jw.

The impedance of a TEM transmission line is uniquely
given by its static capacitance/unit length as

377 ohms

- \/gcscatic/cﬂ (5)

ZO - 1/(‘/;7Cstatic)

where V,, is the phase velocity, 377 ohms is the impedance
of free space, ¢, is the relative dielectric constant, and
€¢ 1s the permittivity of free space. The static capacitance
network provides the connection between the field solution
and the conductor geometry. It is not an equivalent circuit.
The equivalent circuit is obtained by applying the relevant
boundary conditions to the admittance or impedance ma-
trix description of the coupled lines. This results in a set
of equations that relate the static capacitance values to
the L’s, C’s, and unit elements of the equivalent circuit.
Again, the L’s are a shorthand notation for shorted trans-
mission lines and the C’s are a shorthand notation for
open-circuited lengths of transmission line.

When the problem is generalized to coupled lines, the
voltage and current become two component vectors. They
are related by

dv . dl .
:i? = —]wLI E = '—]CUCV (6)

where L and C are 2-by-2 matrices. C is given by

Ci+Cmn ~Cm
¢= (M)
~Cm  C2+Cn

Here, C,, is the mutual capacitance/unit length between
the lines, and C) is the self capacitance/unit length be-
tween line 1 and the ground. Since a TEM line has a
unique propagation velocity, the matrix product LC is di-
agonal, where the diagonal elements are just the square
of the phase velocity. Therefore, the capacitances and the
phase velocity are all one needs to know to describe the
coupled lines.

Since the distributed capacitance/unit length between
a line and its ground plane (and the phase velocity) can de-
scribe a TEM transmission line, it seems reasonable that
the distributed mutual capacitance/unit length between
two lines might also describe a transmission line. This ap-
proach has been developed and yields the three-line equiv-
alent circuit for coupled TEM lines, shown in Fig. 1, as
described by Seviora [1].
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This article uses a different equivalent circuit to repre-
sent the coupled lines. (A few more alternative equivalent
circuits are given in Appendix A.) The equivalent circuit
chosen for this article was originally developed by Sato
and Cristal [2]. (See Fig. 2; the bottom portion of the fig-
ure is the shorthand notation used in this article. Shorted
lengths of transmission line are written as inductors, and
the ground planes or return conductors are omitted.) The
reader may notice that the transmission lines running di-
agonally have negative impedance. The S parameters of
a negative characteristic impedance line are the complex
conjugate of those of the positive impedance line. As long
as the network analysis program correctly accounts for
this, such negative impedances are not a problem.

In this article, all the “inductors” are shorted lengths
of transmission line. Some of the “capacitors” here are
capacitances/unit length and represent a distributed cou-
pling that is modeled as a transmission line. However,
the fringing capacitances discussed here are of the ordi-
nary, lumped variety, and this mixture of capacitor types
should be kept in mind by the reader.

To summarize, the static capacitance matrix is central
to the theoretical description of microwave filters using
parallel coupled lines. It serves a dual purpose. From
the microwave viewpoint, the capacitance represents the
distributed coupling between two lines, or between a line
and a ground plane. A proper network description of this
coupling requires familiarity with Richard’s transforma-
tion and the Kuroda transformations. This article will
not derive the network-equivalent circuit but will take it
as given. From the physical viewpoint, the capacitances
represent the usual capacitance found by solving the elec-
trostatic field problem. The physical basis of the dual
function of the static capacitance is a somewhat subtle
idea, which involves the use of complex potentials [3], and
will not be explored further here.

The original derivation of the impedance matrix for
coupled lines was done by Jones and Bolljahn [4]. Ri-
blet [3] put the admittance description on firm theoreti-
cal ground. An important set of papers by Wenzel [5-8]
provides a good introduction to capacitance matrices and
coupled-line theory.

lll. Possible SWS Transverse Geometries
and Assumptions

The range of SWS transverse (the cross-sectional view
normal to the lengths of the lines) geometries that can
be analyzed is large, if the program which calculates the
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capacitance matrix is of sufficient generality. The recent
availability of software (hereafter denoted by MPMCTL)
developed by workers at Syracuse University [9] enables
a wide range of geometries to be considered. MPMCTL
is written explicitly to handle the transverse geometries
shown in Fig. 3. These include (a) infinitely thin coupled
microstrips, (b) finite thickness coupled microstrips, (c)
coupled suspended substrate striplines, (d) coupled rect-
angular conductors, (e) coupled striplines, (f) broadside
coupled lines, and (g) a coplanar waveguide. However,
user-defined geometries are also available. Multiple dielec-
tric layers are allowed if the dielectric interfaces are parallel
to the ground planes.

Since the analytic description is based on a two-
dimensional static capacitance matrix, it implicitly as-
sumes TEM-mode propagation. If the conductors are par-
allel to the ground planes and embedded in a material with
a uniform dielectric constant, then it is a good assumption
that the waves excited on the lines are TEM waves. If the
dielectric loading is not homogeneous, the fields are not
pure TEM. However, in that case, this article will calculate
an effective homogeneous dielectric constant and continue
to assume TEM-mode propagation.

Besides a homogeneous dielectric constant, the largest
cross-sectional dimension of the line must be small, as com-
pared with a wavelength, so that the axial components will
be small, as compared with the transverse components,
and the wave essentially TEM. If the lines are close to-
gether, as compared with a wavelength, one may neglect
retardation effects as well.

The approach taken in the analysis is the following.
The impedances of all the transmission lines in the equiva-
lent circuit are determined from the static capacitance ma-
trix (calculated using MPMCTL) for that line geometry.
The electrical length of the lines is determined from the
known physical length and the effective dielectric constant.
The terminating reactances are calculated separately. For
fringing capacitances, the author uses the published results
of Getsinger [10]. The S-parameters of the final equivalent
circuit are calculated with a microwave computer-aided de-

sign (CAD) program called TOUCHSTONE [11].

IV. Solution of the Electrostatic Field
Problem

The static capacitance matrix discussed in Section III
is obtained by solving the two-dimensional Laplace equa-
tion for the static electric field for the given arrangement
of conductors (assuming that the conductors are infinite



in length). There are several approaches to solving such
boundary value problems. The approaches will not be dis-
cussed in detail, because they are covered extensively in
the literature. Nevertheless, a few remarks are in order.

Conformal mapping has been used to obtain exact re-
sults when there are two conductors symmetrically placed
between ground planes [12]. If they are unsymmetrically
placed, the analysis becomes very unwieldy. The numeri-
cal approaches are able to handle a larger number of con-
ductors than the analytical approaches. This is especially
important if next-nearest-neighbor coupling is significant.
The finite difference-equation approach has been exten-
sively used [13], but it requires more computer time than
other techniques and, unless a very fine mesh is used, is
generally not extremely accurate. Its primary advantage
is the simplicity of the algorithm.

The most accurate results, especially for edge-coupled
striplines, have been obtained by using a Green’s function
integral equation moment method. This moment method
can give accuracies of a few tenths of a percent [14]. The
calculation of the capacitance matrix using such a method
was carried out by Kammler [15]. This approach is general
enough to handle any number of conductors; however, it
is restricted to very thin conductors that are parallel to
the ground planes and embedded in a homogeneous di-
electric medium. The current JPL X-band masers (Block
ITA) satisfy these restrictions quite well. A FORTRAN
program based on Kammler’s algorithm was written and
used by the author to model the X-band maser prior to
the appearance of MPMCTL.

The MPMCTL software uses a free-space Green’s func-
tion integral equation formalism [16]. The dielectric is
replaced by the equivalent bound charge densities. The
equations are solved by using a moment method that gives
good agreement with the author’s program in the geome-
tries common to both. MPMCTL also gives the charge
densities on each pulse. MPMCTL is general enough to
handle losses, although that capability is not used for this
article. Further improvements to the model will include
this.

V. Effective Dielectric Constant, Relative
Velocity, and Line Length

The effective relative dielectric constant can be re-
garded as the ratio of the charges on a given conductor
with partial dielectric loading to the ratio of the charges
on the same conductor when there is no dielectric, pro-
vided that the potentials of the conductor are the same in

both cases. Since the capacitance is the charge per unit
voltage, if one assumes always a voltage of 1 V, the ele-
ments of the capacitance matrix give the charges on the
conductors. That is, Cj; is the charge on conductor 7 if
conductor j is at a potential of 1 V and all other conduc-
tors are grounded.

It is particularly easy to determine the effective dielec-
tric constant at the lower cutoff frequency, the midband
frequency, and the upper cutoff frequency, since the volt-
age distribution on the conductors is simple. At the lower
cutoff frequency, all the conductors are at the same poten-
tial (for example, 1 V). At midband, the voltage progresses
from finger to finger as +1 V, 0V, -1V, 0 V, +1 V, etc.
At the upper cutoff frequency the voltage progresses as
+1V, =1V, +1V, -1V, etc. (See Fig. 4.)

Consider the following example. If one has three con-
ductors, as shown in Fig. 4(a), then the charge on conduc-
tor 2 (i.e., @2) equals C3; plus Css plus Co3. Note that
Cq1 and Cy3 are negative, that is, a 1-V potential on fin-
gers 1 and 3 induces a negative charge on finger 2. A 1-V
potential on finger 2 induces a positive charge on finger 2.
The total charge on finger 2 is the algebraic sum of the
charges.

If the three conductors are at midband, Fig. 4(b), then
the charge on finger 2 is given by Cy, alone, because fingers
1 and 3 at 0 V do not induce any charge on finger 2.
Therefore, Q2 equals Cy,.

If the three conductors are at the upper cutoff fre-
quency, Fig. 4(c), then the negative potential of fingers
1 and 3 induces a positive charge on finger 2, which adds
to the positive charge induced by finger 2 being at 1 V.
Therefore, Q2 equals [Ca;| plus Caz plus |Cosl.

This is repeated for the partially loaded geometry, and
the effective relative dielectric constant is given by the ra-
tio of @2 in the loaded and unloaded cases. That is, c.qg

equals @y (loaded)/Q2(empty).

Once the effective dielectric constant is known, the
phase velocity is equal to ¢/,/e€eq, where ¢ is the speed
of light in a vacuum. An estimate for the electrical length
of the fingers in degrees can now be found from

0 = (360f1,)/V, (8)

where f is the frequency, {, is the physical length, and
Vp is the phase velocity in the medium of propagation.
Determining this line length is necessary for the equivalent

69



circuits. The physical length is known from the geometry
of the structure.

Vi. Terminating Reactances

The masers built at JPL generally use a capacitive load-
ing on one or both ends of the fingers. The capacitances
used in practice are very small, on the order of tenths of
picofarads. Although these capacitances are small, they
play a vital role. One might guess that a finger a full half-
wavelength long, with no terminating capacitance, could
also serve as a possible SWS geometry. However, in this
case, the capacitive coupling between the lines exactly bal-
ances the magnetic coupling, and there is no propagation
down the SWS. The capacitive loading at the ends of the
fingers is necessary to upset the balance.

Another way to see this is to examine the Poynting vec-
tor. The transverse E and H fields account for the prop-
agation of energy back and forth along the finger. They
do not lead to energy propagation from finger to finger
down the SWS. The component of the fringing electric
fleld along the length of the finger (see Fig. 5) and the
magnetic field perpendicular to the length of the finger
cause a component of the Poynting vector to be directed
down the structure.

To model SWS’s, one must estimate the capacitive load-
ing from the fingertips to the surrounding copper walls.
This capacitance is generally some combination of paral-
lel plate capacitance and fringing capacitance. (A fringing
capacitance accounts for the electric field lines that are not
straight and uniform between the conductors, but rather
tend to bulge near the ends.) There are two fingertip load-
ing capacitances that must be estimated; they are shown
in Fig. 6. The first, designated Cy, is the capacitance from
the end of the finger to the surrounding walls. The sec-
ond, designated C;, is the capacitance from the end of one
finger to the end of an adjacent finger.

It should be mentioned that these capacitances will de-
pend on the frequency within the passband of the SWS.
For example, at the lower cutoff frequency, all the fingers
are at the same potential. The electric field has no nor-
mal component at the plane midway between the fingers.
Therefore, C; must be zero at the lower cutoff frequency.
At the upper cutoff frequency, adjacent fingers are at op-
posite potential, and the electric field has only a normal
component at the plane midway between the fingers. Here
C, must be maximum. This article assumes that Cy and
C; are independent of the frequency. The purpose of this
section is to show how to obtain ballpark estimates of the
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capacitances for use in the equivalent circuits. Further re-
finements would include more exact calculations, as well
as the frequency dependance.

The values of the fringing capacitances can be esti-
mated with the results obtained by Getsinger for rectan-
gular conductors centered between ground planes. The ca-
pacitances that Getsinger calculates are shown in Fig. 7.
The odd-mode fringing capacitance, C%,, is the capaci-
tance per unit length to ground (this includes the top and
bottom ground planes, as well as the end wall) from one
corner and half the associated vertical wall in the cou-
pling region for a bar with odd-mode excitation. The
even-mode-fringing capacitance, C}e, is the capacitance
per unit length to ground (in this case, only the top and
bottom planes) from one corner and half the associated
vertical wall in the coupling region of a bar with even-
mode excitation. Getsinger determined the capacitances
by using a conformal mapping technique. The results are
exact for bars extending in width infinitely far from the
coupling region between the conductors. (Future CAD
work may benefit from expressions derived by Perlow [17],
which provide relatively simple algebraic expressions for
the coupling capacitances, in place of Getsinger’s charts.)

In order to estimate Cj, use Getsinger’s values of
t0(s/b,1/b), where s is twice the gap (g) between the end
of the finger and the opposing ground plane. See Fig. 8.
Since the capacitances are per unit length, multiply by
the width w of the conductor. Since Getsinger’s charts
are for centered conductors, estimate C; by adding the
capacitances for the two cases of different b. (The capaci-
tances are added because each one gives the contribution
from only half of the vertical wall at the end of the finger.)
This gives the fringing capacitance from a horizontal edge
as

t 7

C C
Cy=ew {% (29/b1,8/b1) + % (29/b2yt/bz)} (9)

where ¢, equal to g ¢, is the dielectric permittivity of the
medium. Here €g, equal to 0.0886 pF/cm, is the permittiv-
ity of free space, and ¢, is the relative dielectric constant.

The finger-to-finger fringing capacitance C; can be es-
timated from Getsinger’s charts if one uses C}, and the
geometry of Fig. 9. Now the spacing between the ground
planes is the pitch p of the slow-wave structure. The width
of the fingers w (as used above) now plays the role of
Getsinger’s t and vice versa. Thus, one obtains

!

Cy.
Cz‘ = e (29/p1w/p) (10)
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There is no factor of 2 here because in the equivalent
circuits one has two capacitors C, leaving each fingertip.
The values obtained in this way can be used as starting
values for the models.

VIil. Examples

A. X-Band Half-Wavelength Comb

The geometry of the current X-band Block ITA SWS is
shown in Fig. 10. If one starts with the equivalent circuit

of Sato and Cristal, this will model the coupling between
the fingers. The nodes at the ends of the transmission
lines in the equivalent circuit correspond to the ends of
the fingers. The 12-mil gap between the ends of the fingers
and the copper cavity (ground) is represented by a fringing
capacitance Cy. The electric field between the ends of the
fingers is represented by a fringing capacitance, C,.

The capacitance matrix for an array of five conductors
with the geometry of Fig. 10(a) can be calculated with
MPMCTL and is given by

- 2722 —43.04  —3.996 —0.876 —0.265 -
—43.04 2808  —42.27 -3.83  —0.877
[C]=| -399 —4227 2808  —4227 —399 |pF/m (11)
—0.876 —3.83 —4227  280.8  —43.04
| o266 —0.877 —-399 —4304 27122 |

The self and mutual capacitances of the parallel con-

ductors are easily derived from the capacitance matrix.

Cselr Is given by

Csef = —3.99 —42.27 4+ 280.8 — 42.27 — 3.99
= 188.28 pF/m (12)
Cmut = 42.27 pF/m

The line admittances are given by

(3 x 108) (188.28 x 10712)

Yseit = VpCself = m

= 1.80 x 10~2 mhos (13)

or Zgeif = 1/Year = 55.5 ohms

(3 x 10%) (42.27 x 10~12)

= 4.05 x 10~ mhos
V9.8

(14)

Yiut =

or Zmut = 1/Ymut = 247 ohms.

The line lengths are easily determined because the di-
electric filling is assumed to be uniform. For the X-band
maser, the finger length of 0.196 in., see Fig. 10(b), corre-
sponds to an electrical length of 150 deg at 8 GHz.

Finally, the fringing capacitances are determined. Us-
ing values of g equal to 0.012 in., s equal to 0.024 in., b,
equal to 0.080 in., b5 equal to 0.220 in., ¢ equal to 0.002 in.,
€o equal to 0.0886 pF/cm, w equal to 0.040, ¢, = 9.8, and
Getsinger’s charts, one calculates Cy equal to 0.19 pF. By
using ¢ equal to 0.012 in., p equal to 0.080 in., ¢ equal to
0.040 in., w equal to 0.002 in., ¢; equal to 0.0886 pF/cm,
€- equal to 9.8, and Getsinger’s charts, one calculates C;
equal to 0.01 pF.

The equivalent circuit for five fingers is shown in Fig. 11.
The author finds that better agreement with measured
data is obtained if C is decreased slightly to 0.1 pF, and
C; is changed to —0.005 pF. A calculation of Sy; for this
circuit with the new values using TOUCHSTONE is given
in Fig. 12. The measured behavior of S3; for a comb with
44 fingers is shown in Fig. 13. The predicted group delay
for five fingers is shown in Fig. 14. At midband, the delay
is about 1 nsec. Therefore, for 44 fingers one would expect
about 8.8 nsec. The measured group delay is shown in
Fig. 15 and is about 9 nsec at midband.

"



B. S-Band Quarter-Wavelength Comb

In this example, the basic approach used above can be
generalized to handle more complicated structures. The
example chosen is an S-band quarter-wavelength comb
structure with ruby loading on one side of the fingers, and
no dielectric on the other side. The dielectric does not ex-
tend along the entire length of the finger. The geometry is
shown in Fig. 16. A similar geometry is being considered
for a Ka-band (32-GHz) traveling-wave maser.

The problem naturally lends itself to a two-part anal-
ysis. The first part begins at the bottom of the cavity,
where the fingers are shorted, and extends to the point
on the fingers where the dielectric stops. The second part
begins at the top of the dielectric and extends to the cover.

The first part can be thought of as a conventional comb
structure, with the additional complication of partial di-
electric loading. The first task is to derive an equivalent
circuit for the comb structure by starting from the basic
circuit of Sato and Cristal. Then the capacitance matrix
is calculated as before, by using MPMCTL. The capaci-
tance matrix will also be calculated for the empty comb,
which is necessary in order to model the unloaded portion
of the comb, as well as to calculate the effective dielectric
constant. The line admittances will be derived from the
elements of the first capacitance matrix as before, except
that the velocity of propagation will depend on the value
of the effective dielectric constant. The effective electrical
length of the lines in degrees also depends on this effec-
tive dielectric constant. The second part of the circuit will
be represented by a Sato/Cristal pair of lines. One set of
nodes coincides with the nodes at the top of the dielectric,
the other set of nodes is located at the tops of the fingers.
As before, the electric field from the fingertips to ground
and from fingertip to fingertip is represented by C; and
C;, respectively.

Starting with the equivalent circuit for a pair of coupled
lines, a somewhat simpler circuit results if one end of all
the conductors is grounded. The resulting circuit is shown
in Fig. 17. One is left with an equivalent circuit composed
only of S-plane inductors (i.e., shorted transmission lines).

The capacitance matrix for the finger geometry without
any dielectric is obtained by using MPMCTL. The result
for three fingers is

33.76 —9.64 —0.259
[C]=|-964 3742 -—964 | pF/m  (15)
—0.259 —9.64 3376
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The capacitance matrix for the section of the structure
with partial filling requires more work. The user-defined
geometry portion of MPMCTL must be used. The 136
nodes used for the moment method calculation are shown
in Fig. 18.

The capacitance matrix for three fingers is calculated
to be

1076 —2495  —0.800
[C]=| -25.02 1171  —25.00 | pF/m (16)
—-0.800 —2498  107.6

Therefore, the effective dielectric constants at lower,
midband, and upper cutoffs are given by

67.08 N
eerr(lower cutoff) = 813~ 3.70
€eg(midband) = -;—;77; =3.13 (17)
eea(upper cutoff) = %2— =2.95 |

The line impedances for the empty portion of the comb
are determined as before,

Cseit = —9.64 + 37.42 — 9.64 = 18.14 pF/m

(18)
Crut = 9.64 pF/m
Yeerr = (3 x 10%) (18.14 x 10712) 1
= 5.44 x 1073 mhos (19)
Zseir = 1/Yseir = 184 ohms J
Yimue = (3 x 10%) (9.64 x 10712)
= 2.892 x 1073 mhos > (20)
Zmut = l/ymut = 346 ohms J

Similarly, for the partially filled portion of the comb,



Coert = —25.02 +117.1 — 25.00 = 67.08 pF/m
(21)
Crut = 25.0 pF/m

_ (3x10%) (67.08 x 107?)

Yoelr = =1.1375 x 10~2 mhos
s V313

(22)

3 -12

Ymut == (3 X 10 ) (2501 X 10 ) = 42409 X 10_3 mhos
V313

(23)

Zmut = 1/ Yeut = 236 ohms (24)

Yeelt — Yiue = 7.1341 x 1072 mhos (25)

1/ (Yeeit — Ymut) = 140 ohms (26)

The line lengths are also required. For the unloaded
portion of the line, @ equals 16.5 deg at 2 GHz. For the
loaded portion, 6 equals 47.5 deg.

The fringing capacitances are determined as before. Us-
ingt = 0.050in., s = 0.140 in., b = 0.280 in., w = 0.050 in.,
one finds that Cy = 0.0214 pF. For the finger-to-finger
fringing capacitance, one uses ¢ = 0.050 in., s = 0.140 in.,
b = 0.125 in., and w = 0.050 in. One then finds that
C, =0.01 pF.

The equivalent circuit for five fingers is shown in Fig. 19.
Better agreement with the measured data is obtained if
C; is increased to 0.065 pF and the electrical length of
the loaded portion of the fingers is increased to 56 deg. A
TOUCHSTONE analysis of this circuit is shown in Fig. 20.
The measured data are shown in Fig. 21. The calculated
group delay for five fingers is shown in Fig. 22; at mid-
band this is about 2 nsec. Therefore, 48 fingers would be
expected to have a group delay of about 19.2 nsec. The
measured data are shown in Fig. 23. The group delay is
about 20 nsec at midband.

VIIl. Discussion and Further Improvements

A summary of the the two examples worked out in Sec-
tion VII is given in Table 1. The first three rows of the
table compare the calculated and measured values of the
upper and lower cutoff frequencies (at approximately the

—3-dB points) and the group delay at the center of the
bandpass. The calculated values are for a five-resonator
structure. (The group delay is multiplied by the appro-
priate factor to make the number of resonators the same
in the calculated and measured cases.) The values of the
parameters used in the equivalent circuits are shown in the
last eight rows of the table. If those values are different
from those calculated in Section VII from purely geomet-
rical considerations, the calculated value is given in paren-
theses next to the value used in the TOUCHSTONE pro-
gram. Some flexibility was allowed because the theoreti-
cal filter response can be a very sensitive function of some
parameters whose values are hard to calculate precisely.
For example, the bandwidth is a very sensitive function
of C;; if one judged the model solely on the basis of the
prediction by using the estimated value for C;, one might
conclude that the overall model is a poor one, when in fact
the problem lies in the estimation of C,.

The values for the line impedances were never adjusted,
and only the electrical length for the partially filled portion
of the S-band structure was adjusted. The value of 56 deg
corresponds to a dielectric constant of about 4.3, which
is not too different from the estimated effective dielectric
constant of 3.7 at the lower cutoff. Nevertheless, this may
be hinting that a more accurate model is really necessary,
one which takes into account the quasi-TEM nature of the
propagation.

Among the more interesting surprises was the need
for a negative finger-to-finger fringing capacitance for the
X-band model. The reason for this is still unclear. A posi-
tive value here can also give approximately the right band-
width, but it was found that the negative value matches
more nearly the observed overall shape of the group delay
response. In particular, the greater slowing at the upper
cutoff is predicted with a negative coupling capacitance,
whereas a positive capacitance predicts a greater slowing
at the lower cutoff.

Parallel coupled strip lines and rectangular conductors
in a geometry useful for maser slow-wave structures can be
approximately modeled. The models require calculation
of the static capacitance matrix of the two-dimensional
array of transmission lines, as well as any (reactive) ter-
minations on the ends of the lines. From a knowledge of
the capacitance matrix, transmission-line equivalent cir-
cuits for the coupled lines can be found. The (reactive)
terminations are modeled as lumped elements. Approxi-
mate estimates of these terminations may be obtained by
using published data, such as Getsinger’s [10]. Once the
circuit is obtained, the S-parameters can be obtained with
a commercially available CAD program, such as TOUCH-
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STONE. All the S-parameters can be calculated, as well these capacitances with frequency For the inhomogeneous
structures, a four-transmission-line equivalent circuit (as
is shown in Appendix A) should give better results than

Further work in this area would include better calcula- the “equivalent dielectric constant” approach used in this
tion of the fringing capacitances, especially the variation of  article.

as the group delay.
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Table 1. Summary of X- and S-band SWS parameters

X-Band S-Band
Measured Calculated Measured Calculated
flower, GHz 7.3 7.2 2.41 2.44
Fupper, GHz 8.4 8.54 2.86 2.90
Delay, nsec 9.0 8.8 20.0 19.2
Z1(9) 55.5 346
Z2(R) 247 184
Z3(Q) — 236
Z4(2) — 140
61 (deg) 150 16.5
62 (deg) — 56
(47.5)
Cr(pF) 0.10 0.0214
(0.19)
Cz(pF) -0.005 0.065
(0.0099) (0.01)
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Fig. 2. Six-line equivalent circuit for coupled TEM lines.
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Fig. 7. The even-mode (Cfs) and odd-mode (Cfp) fringing capaci-
tances considered by Getsinger.
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Fig. 8. Geometry used to calculate the fringing capacitance from
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Fig, 9. Geometry used to calculate the fringing capacltance from
fingertip to fingertip.
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Fig. 10. Geometry of the X-band (Block lIA) slow-wave structure for five fingers:
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(a) transverse view, and (b) side view.



- X Cx X T X
1 7YY 3 5 7Y 7/-|
Zp 22 Zy 23
-Z, -2, -Z, -Z,
z, z, z, z,
Z> Z2 2z 8 23
24 AAAS \AAAS
Ci= cy o c;

il

i

*

Ct

p10

L

+

Flg. 11. Equivalent circuit used 1o model the X-band slow-wave structure of Fig. 10.
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Fig. 12. Calculated S21 response for the circuit of Fig. 11.
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Fig. 18. Location of the nodes used to calculate the capacltance matrix and effective dielectric constant of the partially loaded
comb structure.
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Appendix A

Additional Equivalent Circuits

Several different equivalent circuits for coupled lines
using transmission lines have been derived by other re-
searchers. The circuits of Seviora and Sato and Cristal
have already been mentioned. The circuit of Seviora can
be modified by using the capacitance matrix transforma-
tion to yield another circuit, which is discussed by Mal-
herbe [18]. The circuit is shown in Fig. A-1, and in it,

(%) (=)
legﬂ 9£+_;_ (A-1)

Ca

€

(A-3)

The problem of modeling coupled-line networks in an inho-
mogeneous dielectric medium has also been investigated.
The counterpart of the Jones and Bolljahn study (symmet-
ric conductors and homogeneous dielectric material) for
the case of inhomogeneous dielectric material (symmetric

7 p Tz Cox conductors) was performed by Zysman and Johnson [19].
=
—_ + —_—
€ €
Cheng and Edwards [20] have shown that the three-
transmission-line network of Seviora, if extended to in-
ﬁ + @ clude quasi-TEM coupling, becomes the four-transmission
Zy = 377 6—62_ (A-2) network shown in Fig. A-2. This circuit is being given
€r Ch2 to improve the modeling of the partially loaded geometry,
% Ciz g g
€ such as the S-band example considered in this article.
O— ; ©
Zy= N
vevan Cc even o
1:n n:1
g 23 % i -2
:3 Za= Veven C’ Beven
o )
4 2
o —0 37 Vug(C+2C," odd
Fig. A-1. Equivalent clrcuit of Malherbe for
coupled lines. O —0
1
Zp=—,80
o 4 stsn o} even o

Fig. A-2. Equivalent clrcult of Cheng and Edwards to model
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Appendix B
TOUCHSTONE Files

The TOUCHSTONE files used for the X-band and S-band examples described in Section VII are shown in Figs. B-1
and B-2 for reference.

DIM

FRED GHZ
RES OH
IND NH
SBE FE
LNG MIL
TIME NS
COND 7 0H
ABNG DED

VAR
CLINE IMFEDRANMCEYS CaLCULATED FROM CSELF
CLIME S TMEFEDANCES CALTULATED
CFROM CMUTUAL
EL [N= L VESTIMATED LINE LENGTH
FloinM=8.0C et 8.0 GHZ
CF1l=.1 CERINGING CaFAlITANCE FROM FIMBER TIfF
CAi=—.00% PERIMEING CARSLLITANCE FROM FTRG
EGMN
CET
RES 1 8] VINFPUT MATOHING RETWNORE
IND i L

DEFLIF 1

TI.IN L EoEL TN
TN R 4 B
TLIN G & “ELIN
T IN ¥ &
.y 2 10
TLLin 1 4
TLIN 2 K
TLIN 4
TLLAN OB &
TLAnd ] 3
TLIN & 7
TLIN ; 1o
TLinN & g
. 1 A

2 4

4 &

] 7

[ =] L E LMD

b b4 S TND

3 10 EULLMB
CHEF ! i) [ |
Ak - ' GroEl
i [ LF

Fig. B-1. TOUCHSTONE file to model the X-band slow-wave structure.

87



XT WM

QuT

KW
ATWM
X T

SWEEF

RN
Fe Gk

0
&)
(W)
0
(4]

i)

i)

ZIMF

2 IMF

PRLOTS LOG

0.5

MAGNT TUDE

TPLOTS GROUFE DELAY

OF

PRLOTS LOG MAGNITUDE OF 521

11

Fig. B-1 (contd)




FES OH
IND  H
CRF eE
LG ML
TIME NS
CONMD SOH
ANG DEG

VAR

CFl=.
CX1=.065
ELNM1I=1&. 0 VLOINE LENGTH OF

El.

D24

TR IMNEGING

CAFACT TAaN

PLODRED LERGBTH GF

Fiofnd=.. 0 ten Ll GHZ

BN

[

TL.IN
TL.SE
Ak

TLst
TLsl
TLS0
TLIN

G bk e e e e
T8 M
TR T

-

=

T2

R STl o i o

mTmTm T T T

TOT e SWWS

F

9

. B-2. TOUCHSTONE file to model the S-band slow-wave structure.
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